
Scalable Producer-Consumer Pools based on

Elimination-Di�raction Trees

Yehuda Afek, Guy Korland, Maria Natanzon, and Nir Shavit

Computer Science Department
Tel-Aviv University, Israel,

contact email: guy.korland@cs.tau.ac.il

Abstract. Producer-consumer pools, that is, collections of unordered objects
or tasks, are a fundamental element of modern multiprocessor software and a
target of extensive research and development. For example, there are three com-
mon ways to implement such pools in the Java JDK6.0: the SynchronousQueue,
the LinkedBlockingQueue, and the ConcurrentLinkedQueue. Unfortunately, most
pool implementations, including the ones in the JDK, are based on centralized
structures like a queue or a stack, and thus are limited in their scalability.
This paper presents the ED-Tree, a distributed pool structure based on a com-
bination of the elimination-tree and di�racting-tree paradigms, allowing high
degrees of parallelism with reduced contention. We use the ED-Tree to provide
new pool implementations that compete with those of the JDK.
In experiments on a 128 way Sun Maramba multicore machine, we show that
ED-Tree based pools scale well, outperforming the corresponding algorithms in
the JDK6.0 by a factor of 10 or more at high concurrency levels, while providing
similar performance at low levels.

1 Introduction

Producer-consumer pools, that is, collections of unordered objects or tasks, are a fun-
damental element of modern multiprocessor software and a target of extensive research
and development.

Pools show up in many places in concurrent systems. For example, in many ap-
plications, one or more producer threads produce items to be consumed by one or
more consumer threads. These items may be jobs to perform, keystrokes to interpret,
purchase orders to execute, or packets to decode. A pool allows push and pop with
the usual pool semantics [4]. We call the pushing threads producers and the popping
threads consumers.

There are several ways to implement such pools. In the Java JDK6.0 for exam-
ple they are called �queues�: the SynchronousQueue, the LinkedBlockingQueue, and
the ConcurrentLinkedQueue. The SynchronousQueue provides a �pairing up� function
without bu�ering; it is entirely symmetric: Producers and consumers wait for one an-
other, rendezvous, and leave in pairs. The term unfair refers to the fact that it allows
starvation. The other queues provide a bu�ering mechanism and allow threads to sleep
while waiting for their requests to be ful�lled. Unfortunately, all these pools, includ-
ing the new scalable SynchronousQueue of Lea, Scott, and Shearer [6], are based on
centralized structures like a lock-free queue or a stack, and thus are limited in their
scalability: the head of the stack or queue is a sequential bottleneck and source of
contention.

This paper shows how to overcome this limitation by devising highly distributed
pools based on an ED-Tree, a combined variant of the di�racting-tree structure of
Shavit and Zemach [8] and the elimination-tree structure of Shavit and Touitou [7].



The ED-Tree does not have a central place through which all threads pass, and thus
allows both parallelism and reduced contention. As we explain in Section 2, an ED-
Tree uses randomization to distribute the concurrent requests of threads onto many
locations so that they collide with one another and can exchange values. It has a speci�c
combinatorial structure called a counting tree [8, 1], that allows requests to be properly
distributed if such successful exchanges did not occur. As shown in Figure 1, one can
add queues at the leaves of the trees so that requests are either matched up or end
up properly distributed on the queues at the tree leaves. By �properly distributed� we
mean that requests that do not eliminate always end up in the queues: the collection
of all the queues together has the behavior of one large queue. Since the nodes of the
tree will form a bottleneck if one uses the naive implementation in Figure 1, we replace
them with highly distributed nodes that use elimination and di�raction on randomly
chosen array locations as in Figure 2.

The elimination and di�raction tree structures were each proposed years ago [7,
8] and claimed to be e�ective through simulation [3]. A single level of an elimination
array was also used in implementing shared concurrent stacks [2]. However, elimination
trees and di�racting trees were never used to implement real world structures. This is
mostly due the fact that there was no need for them: machines with a su�cient level
of concurrency and low enough interconnect latency to bene�t from them did not
exist. Today, multicore machines present the necessary combination of high levels of
parallelism and low interconnection costs. Indeed, this paper is the �rst to show that
that ED-Tree based implementations of data structures from the java.util.concurrent

scale impressively on a real machine (a Sun Maramba multicore machine with 2x8 cores
and 128 hardware threads), delivering throughput that at high concurrency levels 10
times that of the existing JDK6.0 algorithms.

But what about low concurrency levels? In their elegant paper describing the
JDK6.0 SynchronousQueue, Lea, Scott, and Shearer [6], suggest that using elimina-
tion techniques may indeed bene�t the design of synchronous queues at high loads.
However, they wonder whether the bene�ts of reduced contention achievable by us-
ing elimination under high loads, can be made to work at lower levels of concurrency
because of the possibility of threads not meeting in the array locations.

This paper shows that elimination and di�raction techniques can be combined to
work well at both high and low loads. There are two main components that our ED-Tree
implementation uses to make this happen. The �rst is to have each thread adaptively
choose an exponentially varying array range from which it randomly picks a loca-
tion, and the duration it will wait for another thread at that location. This means
that, without coordination, threads will tend to map into a smaller array range as the
load decreases, thus increasing chances of a collision. The second component is the
introduction of di�raction for colliding threads that do not eliminate because they are
performing the same type of operation. The di�raction mechanism allows threads to
continue down the tree at a low cost. The end result is an ED-Tree structure, that, as
our empirical testing shows, performs well at both high and low concurrency levels.

2 The ED-Tree

Before explaining how the ED-Tree works, let us review its predecessor, the di�racting
tree [8] (see Figure 1). Consider a binary tree of objects called balancers with a single
input wire and two output wires, as depicted in Figure 1. Threads arrive at a balancer
and it sends them alternately up and down, so its top wire always has the same or at
most one more than the bottom one. The Tree[k] network of width k is a binary tree



of balancers constructed inductively by taking two Tree[k/2] networks of balancers and
perfectly shu�ing their outputs [8].

1

0

11

1

2

2

3

3 5

3

2

5

4 4

1

5

4

lock-free 

balancer

lock-free queue

tail

wire 0

wire 1

head

Fig. 1.A Tree[4] [8] leading to 4 lock-free queues. Threads pushing items arrive at the balancers
in the order of their numbers, eventually pushing items onto the queues located on their output
wires. In each balancer, a pushing thread fetches and then complements the bit, following the
wire indicated by the fetched value (If the state is 0 the pushing thread it will change it to 1
and continue to top wire (wire 0), and if it was 1 will change it to 0 and continue on bottom
wire (wire 1)). The tree and stacks will end up in the balanced state seen in the �gure. The
state of the bits corresponds to 5 being the last inserted item, and the next location a pushed
item will end up on is the queue containing item 2. Try it! We can add a similar tree structure
for popping threads, so that the �rst will end up on the top queue, removing 1, and so on.
This behavior will be true for concurrent executions as well: the sequences values in the queues
in all quiescent states, when all threads have exited the structure, can be shown to preserve
FIFO order.

As a �rst step in constructing the ED-Tree, we add to the di�racting tree a collection
of lock-free queues at the output wires of the tree leaves. To perform a push, threads
traverse the balancers from the root to the leaves and then push the item onto the
appropriate queue. In any quiescent state, when there are no threads in the tree, the
output items are balanced out so that the top queues have at most one more element
than the bottom ones, and there are no gaps.

One could implement the balancers in a straightforward way using a bit that threads
toggle: they fetch the bit and then complement it using a compareAndSet (CAS) oper-
ation, exiting on the output wire they fetched (zero or one). One could keep a second,
identical tree for pops, and you would see that from one quiescent state to the next,
the items removed are the �rst ones pushed onto the queue. Thus, we have created a
collection of queues that are accessed in parallel, yet act as one quiescent FIFO queue.

The bad news is that the above implementation of the balancers using a bit means
that every thread that enters the tree accesses the same bit at the root balancer,
causing that balancer to become a bottleneck. This is true, though to a lesser extent,
with balancers lower in the tree. We can parallelize the tree by exploiting a simple
observation similar to the one made about the elimination backo� stack:

If an even number of threads pass through a balancer, the outputs are evenly
balanced on the top and bottom wires, but the balancer's state remains un-
changed.

The idea behind the ED-Tree is combining the modi�ed di�racting [8] tree as above
with the elimination-tree techniques [7]. We use an eliminationArray in front of the
bit in every balancer as in Figure 2. If two popping threads meet in the array, they
leave on opposite wires, without a need to touch the bit, as anyhow it would remain in



B:pop()

C:pop()

A:push(6)

D:pop()

E:push(7)

511

elimination-

diffraction

balancer

1/2 width 

elimination-diffraction

balancer

2

3

4

D:return(7)E: ok

C:return(1)

B:return(2)

A: ok

F:pop()

0

0

0

0

1

6

F:return(3)

Pusher’s 

toggle-bit

Poper’s 

toggle-bit

Fig. 2. An ED-Tree. Each balancer in Tree[4] is an elimination-di�raction balancer. The start
state depicted is the same as in Figure 1, as seen in the pusher's toggle bits. From this state,
a push of item 6 by Thread A will not meet any others on the elimination-di�raction arrays,
and so will toggle the bits and end up on the 2nd stack from the top. Two pops by Threads
B and C will meet in the top balancer's array, di�ract to the sides, and end up going up and
down without touching the bit, ending up popping the �rst two values values 1 and 2 from
the top two lock-free queues. Thread F which did not manage to di�ract or eliminate, will
end up as desired on the 3rd queue, returning a value 3. Finally, Threads D and E will meet
in the top array and �eliminate� each other, exchanging the value 7 and leaving the tree. This
is our exception to the FIFO rule, to allow good performance at high loads, we allow threads
with concurrent push and pop requests to eliminate and leave, ignoring the otherwise FIFO
order.

its original state. If two pushing threads meet in the array, they also leave on opposite
wires. If a push or pop call does not manage to meet another in the array, it toggles
the respective push or pop bit (in this sense it di�ers from prior elimination and/or
di�raction balancer algorithms [7, 8] which had a single toggle bit instead of separate
ones, and provided LIFO rather than FIFO like access through the bits) and leaves
accordingly. Finally, if a push and a pop meet, they eliminate, exchanging items. It
can be shown that all push and pop requests that do not eliminate each other provide
a quiescently consistent FIFO queue behavior. Moreover, while the worst case time is
log k where k is the number of lock-free queues at the leaves, in contended cases, 1/2
the requests are eliminated in the �rst balancer, another 1/4 in the second, 1/8 on the
third, and so on, which converges to an average of 2 steps to complete a push or a pop,
independent of k.

3 Implementation

As described above, each balancer (see the pseudo-code in Listing 1.1) is composed of
an eliminationArray, a pair of toggle bits, and two pointers, one to each of its child
nodes. The last �eld, lastSlotRange,(which has to do with the adaptive behavior of the
elimination array) will be described later in this section.

1 public class Balancer{
2 ToggleBit producerToggle, consumerToggle;
3 Exchanger[] eliminationArray;
4 Balancer leftChild , rightChild;
5 ThreadLocal<Integer> lastSlotRange;
6 }



Listing 1.1. A Balancer

The implementation of a toggle bit as shown in Listing 1.2 is based on an Atom-
icBoolean which provides a CAS operation. To access it, a thread fetches the current
value (Line 5) and tries to atomically replace it with the complementary value (Line
6). In case of a failure, the thread retries (Line 6).

1 AtomicBoolean toggle = new AtomicBoolean(true);
2 public boolean toggle(){
3 boolean result;
4 do{
5 result = toggle.get ();
6 }while(!toggle.compareAndSet(result, !result));
7 return result;
8 }

Listing 1.2. The Toggle of a Balancer

The implementation of an eliminationArray is based on an array of Exchangers.
Each exchanger (Listing 1.3) contains a single AtomicReference which is used as a
placeholder for exchanging, and an ExchangerPackage, where the ExchangerPackage is
an object used to wrap the actual data and to mark its state and type.

1 public class Exchanger{
2 AtomicReference<ExchangerPackage> slot;
3 }
4

5 public class ExchangerPackage{
6 Object value;
7 State state ;
8 Type type;
9 }

Listing 1.3. An Exchanger

Each thread performing either a push or a pop, traverses the tree as follows. Starting
from the root balancer, the thread tries to exchange its package with a thread with a
complementary operation, a popper tries to exchange with a pusher and vice versa. In
each balancer, each thread chooses a random slot in the eliminationArray, publishes
its package, and then backs o� in time, waiting in a loop to be eliminated. In case
of failure, a backo� in �space� is performed several times. The type of space back o�
depends on the cause of the failure: If a timeout is reached without meeting any other
thread, a new slot is randomly chosen in a smaller range. However, if a timeout is
reached after repeatedly failing in the CAS while trying to either pair or just to swap
in, a new slot is randomly chosen in a larger range.

Adaptivity In the backo� mechanism described above, a thread senses the level of
contention and depending on it selects randomly an appropriate range of the elimina-
tionArray to work on (by iteratively backing o�). However, each time a thread starts
a new operation, it initializes the backo� parameters, wasting the same unsuccessful
rounds of backo� in place until sensing the current level of contention. To avoid this,
we let each thread save its last-used range between invocations (Listing 1.1 line 5).
This saved range is used as (a good guess of) the initial range at the beginning of the
next operation. This method proved to be a major factor in reducing the overhead in
low contention situations and allowing the EDTree to yield good performance under
high contention.

The result of the meeting of two threads in each balancer is one of the following
four states: ELIMINATED, TOGGLE, DIFFRACTED0, or DIFFRACTED1. In case of



 0

 2000

 4000

 2  4  6  8  10

T
hr

ou
gh

pu
t (

× 
10

3  o
p/

s)

Number of threads

Unfair Synchronous Queue (detailed)

JDK-Sync-Queue
ED-Sync-Queue

 0

 2000

 4000

 6000

 8000

 10000

 12000

 50  100  150  200  250

T
hr

ou
gh

pu
t (

× 
10

3  o
p/

s)

Number of threads

Unfair Synchronous Queue

JDK-Sync-Queue
ED-Sync-Queue

Fig. 3. The unfair synchronous queue benchmark: a comparison of the latest JDK 6.0 algo-
rithm and our novel ED-Tree based implementation. The graph on the left is a zoom in of the
low concurrency part of the one on the right. Number of producers and consumers is equal in
each of the tested workloads.

ELIMINATED, a popper and a pusher successfully paired-up, and the method returns.
If the result is TOGGLE, the thread failed to pair-up with any other type of request,
so the toggle() method shown in Listing 1.1 is called, and according to its result the
thread accesses one of the child balancers. Lastly, if the state is either DIFFRACTED0
or DIFFRACTED1, this is a result of two operations of the same type meeting in the
same location, and the corresponding child balancer, either 0 or 1, is chosen.

As a �nal step, the item of a thread that reaches one of the tree leaves is placed in
the corresponding queue. A queue can be one of the known queue implementations: a
SynchronousQueue, a LinkedBlockingQueue, or a ConcurrentLinkedQueue. Using ED-
Trees with di�erent queue implementations we created the following three types of
pools:

An Unfair Synchronous Queue When setting the leaves to hold an unfair Syn-
chronousQueue, we get a unfair synchronous queue [6]. An unfair synchronous queue
provides a �pairing up� function without the bu�ering. Producers and consumers wait
for one another, rendezvous, and leave in pairs. Thus, though it has internal queues to
handle temporary over�ows of mismatched items, the unfair synchronous queue does
not require any long-term internal storage capacity.

An Object Pool With a simple replacement of the former SynchronousQueue with
a LinkedBlockingQueue. With a ConcurrentLinkedQueue we get a blocking object pool,
or a non-blocking object pool respectively. An object pool is a software design pattern.
It consists of a multi-set of initialized objects that are kept ready to use, rather than
allocated and destroyed on demand. A client of the object pool will request an object
from the pool and perform operations on the returned object. When the client �nishes
work on an object, it returns it to the pool rather than destroying it. Thus, it is a
speci�c type of factory object.

Object pooling can o�er a signi�cant performance boost in situations where the cost
of initializing a class instance is high, the rate of instantiation of a class is high, and
the number of instances in use at any one time is low. The pooled object is obtained in
predictable time when the creation of the new objects (especially over a network) may
take variable time. In this paper we show two versions of an object pool: blocking and



 0

 2000

 4000

 6000

 8000

 10000

 12000

 50  100  150  200  250

T
hr

ou
gh

pu
t (

× 
10

3  o
p/

s)

Number of threads

Resource Pool

LinkedBlockingQueue
ED-BlockingQueue

 0

 2000

 4000

 6000

 8000

 10000

 50  100  150  200  250

T
hr

ou
gh

pu
t (

× 
10

3  o
p/

s)

Number of threads

Nonblocking Resource Pool

ConcurrentLinkedQueue
ED-Pool

Fig. 4. Throughput of BlockingQueue and ConcurrentQueue object pool implementations.
Number of producers and consumers is equal in each of the tested workloads.

a non blocking. The only di�erence between these pools is the behavior of the popping
thread when the pool is empty. While in the blocking version a popping thread is forced
to wait until an available resource is pushed back to Pool, in the unblocking version it
can leave without an object.

An example of a widely used object pool is a connection pool. A connection pool is
a cache of database connections maintained by the database so that the connections
can be reused when the database receives new requests for data. Such pools are used to
enhance the performance of executing commands on the database. Opening and main-
taining a database connection for each user, especially of requests made to a dynamic
database-driven website application, is costly and wastes resources. In connection pool-
ing, after a connection is created, it is placed in the pool and is used again so that a
new connection does not have to be established. If all the connections are being used,
a new connection is made and is added to the pool. Connection pooling also cuts down
on the amount of time a user waits to establish a connection to the database.

Starvation avoidance Finally, in order to avoid starvation in the queues (Though it
has never been observed in all our tests), we limit the time a thread can be blocked in
these queues before it retries the whole Tree[k] traversal again.

4 Performance Evaluation

We evaluated the performance of our new algorithms on a Sun UltraSPARC T2 Plus
multicore machine. This machine has 2 chips, each with 8 cores running at 1.2 GHz,
each core with 8 hardware threads, so 64 way parallelism on a processor and 128 way
parallelism across the machine. There is obviously a higher latency when going to
memory across the machine (a two fold slowdown).

We begin our evaluation in Figure 3 by comparing the new unfair SynchronousQueue
of Lea et. al [6], scheduled to be added to the java.util.concurrent library of JDK6.0, to
our ED-Tree based version of an unfair synchronous queue. As we explained earlier, an
unfair synchronous queue provides a symmetric �pairing up� function without bu�ering:
Producers and consumers wait for one another, rendezvous, and leave in pairs.

One can see that the ED-Tree behaves similarly to the JDK version up to 8
threads(left �gure). Above this concurrency level, the ED-Tree scales nicely while the



 0

 2000

 4000

 6000

 8000

 10000

 0  100  200  300  400  500  600

T
hr

ou
gh

pu
t (

× 
10

3  o
p/

s)

Work

Nonblocking Resource Pool

ConcurrentLinkedQueue
ED-Pool

 0

 2000

 4000

 6000

 8000

 10000

 0  100  200  300  400  500  600

T
hr

ou
gh

pu
t (

× 
10

3  o
p/

s)

Work

Unfair Synchronous Queue

JDK-Sync-Queue
ED-Sync-Queue

Fig. 5. Throughput of a SynchronousQueue as the work load changes for 32 producer and 32
consumer threads.)

JDK implementation's overall throughput declines. At its peak, at 64 threads, the
ED-Tree delivers more than 10 times the performance of the JDK implementation.

Beyond 64 threads, the threads are no longer placed on a single chip, and tra�c
across the interconnect causes a moderate performance decline for the ED-Tree version.

We next compare two versions of an object Pool. An object pool is a set of initialized
objects that are kept ready to use, rather than allocated and destroyed on demand. A
consumer of the pool will request an object from the pool and perform operations on
the returned object. When the consumer has �nished using an object, it returns it to
the pool, rather than destroying it. The object pool is thus a type of factory object.
The consumers wait in case there is no available object, while the producers, unlike
producers of unfair synchronous queue, never wait for consumers, they add the object
to the pool and leave.

We compared an ED-Tree BlockingQueue implementation to the LinkedBlock-
ingQueue of JDK6.0. Comparison results for the object pool benchmark are shown
on the lefthand side of Figure 4.

The results are pretty similar to those in the unfair SynchronousQueue. The JDK's
LinkedBlockingQueue performs better than its unfair SynchronousQueue, yet it still
does not scale well beyond 4 threads. In contrast, our ED-Tree version scales well even
up to 80 threads because of its underlying use of the LinkedBlockingQueue. At its peak
at 64 threads it has 10 times the throughput of the JDK's LinkedBlockingQueue.

Next, we evaluated implementations of ConcurrentQueue, a more relaxed version of
an object pool in which there is no requirement for the consumer to wait in case there is
no object available in the Pool. We compared the ConcurrentLinkedQueue of JDK6.0
(which in turn is based on Michael's lock-free linked list algorithm [5]) to an ED-Tree
based ConcurrentQueue (righthand side of Figure 4). Again, the results show a similar
pattern: the JDK's ConcurrentLinkedQueue scales up to 14 threads, and then drops,
while the ED-Tree based ConcurrentQueue scales well up to 64 threads. At its peak at
64 threads, it has 10 times the throughput of the JDK's ConcurrentLinkedQueue.

Since the ED-Tree object pool behaves well at very high loads, we wanted to test
how it behaves in scenarios where the working threads are not pounding the pool all the
time. To this end we emulate varying work loads by adding a delay between accesses
to the pool. We tested 64 threads with a di�erent set of dummy delays due to work,
varying it from 30-600ms. The comparison results in Figure 5 show that even as the
load decreases the ED-Tree synchronous queue outperforms the JDK's synchronous



 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 50  60  70  80  90

T
hr

ou
gh

pu
t (

× 
10

3  o
p/

s)

% of Consumers in all threads

Resource pool

JDK-Linked-Blocking-Queue
ED-Linked-Blocking-Queue

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 50  60  70  80  90

T
hr

ou
gh

pu
t (

× 
10

3  o
p/

s)

% of Consumers in all threads

Unfair Synchronous Queue

JDK-Sync-Queue
ED-Sync-Queue

Fig. 6. Performance changes of a Resource pool and unfair SynchronousQueue when total
number of threads is 64, as the ratio of consumer threads grows from 50% to 90% of total
thread amount.

queue. , This is due to the low overhead adaptive nature of the randomized mapping
into the eliminationArray: as the load decreases, a thread tends to dynamically shrink
the range of array locations into which it tries to map.

Another work scenario that was tested is the one when the majority of the pool
users are consumers, i.e. the rate of inserting items to the pool is lower than the one
demanded by consumers and they have to wait until items become available. Figure 6
shows what happens when number of threads using the pool is steady(64 threads), but
the ratio of consumers changes from 50% to 90%. One can see that ED-tree outperforms
JDK's structures both in case when the number of producer and consumer thread equals
and in cases where there are a lot more consumer threads than producer threads (for
example 90% consumers and 10% producers) .

Next, we investigated the internal behavior of the ED-Tree with respect to the
number of threads. We check the elimination rate at each level of the tree. The results
appear in Figure 7. Surprisingly, we found out that the higher the concurrency, that is,
the more threads added, the more threads get all the way down the tree to the queues.
At 4 threads, all the requests were eliminated at the top level, and throughout the
concurrency range, even at 265 threads, 50% or more of the requests were eliminated
at the top level of the tree, at least 25% at the next level, and at least 12.5% at the

Fig. 7. Elimination rate by levels, as concurrency increases.



next. This, as we mentioned earlier, forms a sequence that converges to less than 2 as
n, the number of threads, grows. In our particular 3-level ED-Tree tree the average is
1.375 balancer accesses per sequence, which explains the great overall performance.

Lastly, we investigated how the adaptive method of choosing the elimination range
behaves under di�erent loads. Figure 8 shows that, as we expected, the algorithm adapts
the working range to the load reasonably well. The more each thread spent doing work
not related to the pool, the more the contention decreased, and respectively, the default
range used by the threads decreased.

 1
 2
 3
 4
 5
 6
 7
 8

 0  200  400  600  800

E
lim

in
at

io
n 

ar
ra

y 
ra

ng
e

Work

Elimination Size

ED-Sync-Queue

Fig. 8. Elimination range as the work load changes for 32 producer and 32 consumer threads.

Acknowledgements. This paper was supported in part by grants from Sun Microsys-
tems, Intel Corporation, as well as a grant 06/1344 from the Israeli Science Foundation
and European Union grant FP7-ICT-2007-1 (project VELOX).

References

1. J. Aspnes, M. Herlihy, and N. Shavit. Counting networks. Journal of the ACM, 41(5):1020�
1048, 1994.

2. D. Hendler, N. Shavit, and L. Yerushalmi. A scalable lock-free stack algorithm. In SPAA

'04: Proceedings of the sixteenth annual ACM symposium on Parallelism in algorithms and

architectures, pages 206�215, New York, NY, USA, 2004. ACM.
3. M. Herlihy, B. Lim, and N. Shavit. Scalable concurrent counting. ACM Transactions on

Computer Systems, 13(4):343�364, 1995.
4. M. Herlihy and N. Shavit. The Art of Multiprocessor Programming. Morgan Kaufmann,

NY, USA, 2008.
5. M. M. Michael and M. L. Scott. Simple, fast, and practical non-blocking and blocking

concurrent queue algorithms. In PODC '96: Proceedings of the �fteenth annual ACM

symposium on Principles of distributed computing, pages 267�275, New York, NY, USA,
1996. ACM.

6. W. N. Scherer, III, D. Lea, and M. L. Scott. Scalable synchronous queues. Commun. ACM,
52(5):100�111, 2009.

7. N. Shavit and D. Touitou. Elimination trees and the construction of pools and stacks:
preliminary version. In SPAA '95: Proceedings of the seventh annual ACM symposium on

Parallel algorithms and architectures, pages 54�63, New York, NY, USA, 1995. ACM.
8. N. Shavit and A. Zemach. Di�racting trees. ACM Trans. Comput. Syst., 14(4):385�428,

1996.


